Description Logics

Adrian Groza

Department of Computer Science Technical University of Cluj-Napoca

The World as a Graph	Description Logics	Semantics	Reasoning in DL	Kahoot quiz
Outline			-	

 The World as a Graph
 Description Logics
 Semantics
 Reasoning in DL
 Kahoot quiz

 •0000000
 0000
 0000
 000
 000
 000

Semantic Web Vision

"The Semantic Web is not a separate Web but an extension of the current one, in which information is given well-defined meaning, better enabling computers and people to work in cooperation."

Tim Barners Lee

Social Web

Semantic Web

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●	Description Logics	Semantics 0000	Reasoning in DL	00 Naho	ot quiz
Semantic Se	arch				
		What would yo	ou like to know?		
Milestone del constilles to los con		Is Paris Hiltor	n single?		?
What would you like to know?					la Pasia blitt
Which is the population of Cl	uj-Napoca?	Yes			is raits min
306,474 website wikipedia	Which is the populatio	n of Cluj-l	aris Hilton aris Whitney Hilton (born February 17, 1981), the ersonality, model, singer and actress ebsite wikipedia	American s	socialite, media
What would you like to know?		 How do we know 	?		
Is Alice Walton richer than Ch	risty Walton?	? a / facts	acts to provide this answer:		See reaso
		'is richer than' is treat	as antisymmetric	agree	disagree
No	is Alice watch ticher th	human being, organi of 1s richer than'	sation or other legal person is the left class	agree	disagree
Alice Walton		human being, organi	sation or other legal person is the right	agree	disagree
Alice Walton (born 1949)		'is richer than' is a left	t comparison of is the net worth of	agree	disagree
wikipedia		\$19,200,000,000 has	s been the net worth of Christy Walton since	agree	disagree
Christy Walton Christy Ruth Walton, the wife of late John T.	Walton	\$19,000,000,000 has least February 11th 2	s been the net worth of Alice Walton since at	agree	disagree
wikipedia		United States dollar i	s an unit of currency	agree	disagree

The World as a Graph ০০●০০০০০	Description Logics	Semantics	Reasoning in DL	Kahoot quiz
A Logician's	View of the	World		

• Let's start for the very beginning:

John loves Mary

• But let's view it in a more graphical way:

Something important is missing

The World as a Graph	Description Logics	Semantics	Reasoning in DL	Kahoot quiz
0000000				

And now we said too much!!!

- Who said that John was a man?
- Who said that Mary was wearing a skirt?
- And what does a heart to do with love? What we know is that:
 - There is something called John
 - There is something called Mary
 - There is something called Love going on between John and Mary

Semantics

Reasoning in DL

Kahoot quiz

Now for Something More Complicated

- Suppose we want to say "something general", like Grandparents Love Children
- Notice that we want to establish a relation between two sets: the set of Grandparents and the set of Children, not just about two individuals like *John* and *Mary*
- So we have to think in terms of sets

Grandparents is a subset of the set of things that love Children

The World as a Graph	Description Logics	Semantics	Reasoning in DL	Kahoot quiz
00000000				

Some Ambiguity and Some Notation

- How do we construct, given the set of Children, the set of all those who love them?
- But what do we mean by "Those who love children"? If I'm a member of this set, should I:
- Love all children
- 2 Love at least one child
- Love only children
 - Standard notation
 ∃love.Children
 ∀love.Children

The World as a Graph ○○○○○○○●	Description Logics	Semantics	Reasoning in DL	Kahoot quiz
Terminolog	ies			

General Inclusion Axioms

Coming back to the Grandparents we can now write: *Grandparents* $\sqsubseteq \exists love. Children$

Definitions

If we can represent subsets, then we can also express equivalence (using double inclusion): $GP \equiv Human \sqcap \exists hasChild. \exists hasChild. Human \sqcap \exists love. Children$

The World as a Graph	Description Logics	Semantics	Reasoning in DL	Kahoot quiz

Outline

The World as a Graph

- Description Logics
 - Family Ontology
 - Description Logics
 - How far can we go?
- 3 Semantics
- Reasoning in DL
 - Transformation to negation normal form
 - Naive tableaux algorithm

5 Kahoot quiz

The World as a Graph

Description Logics

Semantics

Reasoning in DL

Kahoot quiz

Family Ontology

Let's Try Our Hand with Some Definitions!

Person Female Woman = Man = Mother = Father = Parent = Grandmather = Wife = MotherWithoutDaugther

Person Female $Woman = Person \sqcap Female$ $Man = Person \sqcap \neg Female$ Mother = Woman $\Box \exists$ has Child. Person Father = $Man \sqcap \exists hasChild.Person$ $Parent = Father \sqcup Mother$ $Grandmather = Mother \sqcap \exists hasChild.Parent$ Wife = Woman □ ∃hasHusband.Man MotherWithoutDaugther = Mother □ ∃hasChild. ¬Woman

The World as a Graph	Description Logics ○●○○○○○○○○○	Semantics	Reasoning in DL	Kahoot quiz ○○	
Family Ontology					
More for "Family" Ontology					

We will define the concept of "lucky man" as a man who has a rich and beautiful wife and all his children are happy.

LuckyMan = Man $\sqcap \exists$ married.(Rich \sqcap Beautiful) $\sqcap \forall$ hasChild.Happy

The World as a Graph	Description Logics	Semantics	Reasoning in DL	Kahoot quiz
Femily Ontology				

Family Ontology

An ontology of this talk

Ontologies

Description of the concepts and relationships that can exist for an agent or a community of agents.

Participant $\sqcap \exists$ attends. Talk Participant $\sqcap \forall$ attends.(Talk $\sqcap \neg$ Boring) Speaker $\sqcap \exists$ gives.(Talk $\sqcap \forall$ topic.DL) Speaker $\sqcap \exists$ gives.(Talk $\sqcap \forall$ topic.(DL \sqcup Ontologies))

The World as a Graph	Description Logics	Semantics	Reasoning in DL	Kahoot quiz
	000000000000000000000000000000000000000			

Description Logics

Architecture of a Standard DL System

Terminological part (Tbox)

- Describes the notions by stating properties on concepts and roles and relationships between them
- Abreviations: $LuckyMan \equiv Man \sqcap \exists married.(Rich \sqcap Beautiful)$
- General axioms: ∃hasChild.Human ⊑ Human

Assertional part (Abox)

● Describes concrete situation: *brad* : *Father*, *carlos* : ¬*Fatherbob* : *HappyMan*,(*bob*, *mary*) : *hasChild*, ¬*mary* : ¬*Doctor*

The World as a Graph	Description Logics	Semantics	Reasoning in DL	Kahoot quiz
	00000000000			

Description Logics

DL Representatives - Attributive Language (AL)

- $C, D \rightarrow A$ (atomic concept)
 - op (universal concept)
 - L (bottom concept)
 - $\neg A$ (atomic negation)
 - □ (intersection)
 - $\forall R.C$ (value restriction)
 - $\exists R.C$ (existential quantification)

Example (Syntax of AL)

- Person □ Female, Person □ ¬Female
- Those persons that have a child: *Person* □ ∃hasChild. ⊤
- Those persons all of whose children are female: Person □ ∀hasChild.Female
- Those persons without a child: *Person* □ ∀*hasChild*.⊥

AL with Complements: $C \sqcup D = \neg(\neg C \sqcap \neg D)$

The World as a Graph	Description Logics	Semantics	Reasoning in DL	Kahoot quiz	
How far can we go?					
Number restrictions					

Example (Number restrictions)

A person can be married to at most one other individual:

Person $\sqsubseteq \leq 1$ *married*. \top

Instances of HappyMan have between two and four children:

 $HappyMan \equiv Human \square \geq 2hasChild. \top \square \leq 4hasChild. \top$

The World as a Graph	Description Logics	Semantics	Reasoning in DL	Kahoot quiz
How far can we go?				
Inverse Rol	es			

Example (Inverse roles)

hasChild⁻ = hasParent

 $hasParent(Bob, Alice) \rightarrow hasChild(Alice, Bob)$

 Presenter of a boring talk: Speaker □ gives.(Talk □ ∀attends⁻¹.(Bored ⊔ Sleeping))

Semantics of *r*⁻

 $(r^{-})^{\mathcal{I}} = \{(b,a)|(a,b) \in r^{\mathcal{I}}\}$

The World as a Graph	Description Logics	Semantics	Reasoning in DL	Kahoot quiz
How far can we go?				
Nominals				

Example (All computer scientistis that have met Turing)

ComputerScientist ⊓ ∃*hasMet.*{*Turing*}

A nominal is a singleton set

 $\{a\}^{\mathcal{I}} = \{a^{\mathcal{I}}\}$

Example (Express ABox assertions through GCIs)

 $C(a) \Leftrightarrow \{a\} \sqsubseteq C$ $r(a,b) \Leftrightarrow \{a\} \sqsubseteq \exists r.\{b\}$

One of

extends nominal constructor to a finite set of individuals.

The World as a Graph	Description Logics	Semantics	Reasoning in DL	Kahoot quiz	
How far can we go?					
Role constraints					

• (Transitive Role) hasBrother⁺

 $hasBrother(Bob, David), hasBrother(David, Mack) \rightarrow hasBrother(Bob, Mack)$

● (*RoleHierarchy*)hasMother ⊑ hasParent

 $hasMother(Bob, Alice) \rightarrow hasParent(Bob, Alice)$

married \sqsubseteq loves

The World as a Graph	Description Logics	Semantics	Reasoning in DL	Kahoot quiz
How far can we go?				

Domain and range restrictions

Example (Domain restriction)

Only human beings can have human children: $\exists child.Human \sqsubseteq Human$ Only parents can have children: $\exists hasChild.\top \sqsubseteq Parent$

Domain restriction $dom(r) \sqsubseteq C$

 $\exists r. \top \sqsubseteq C$

Example (Range restriction)

The child of a human being must be human: Human $\sqsubseteq \forall child.Human$

Range restriction $ran(r) \sqsubseteq C$

 $\top \sqsubseteq \forall r.C$

The World as a Graph	Description Logics	Semantics	Reasoning in DL	Kahoot quiz ○○
How far can we go?				
Extensions				

Disjointness of concepts

Woman \sqcap Man $\equiv \bot$.

Example (Reflexivity)

Every entity is part of itself: partOf^r

Reflexive roles

Every individual is related to itself

The World as a Graph	Description Logics ○○○○○○○○○●○	Semantics	Reasoning in DL	Kahoot quiz
How far can we go?				
Roles				

Transitive Symmetric Asymmetric Reflexive Irreflexive Functional InverseFunctional hasAncestor hasSpouse hasChild hasRelative parentOf hasHusband hasHusband

R(a, b) and $R(b, c) \rightarrow R(a, c)$ $R(a, b) \rightarrow R(b, a)$ $R(a, b) \rightarrow \text{not } R(b, a)$ R(a, a) for all anot R(a, a) for any a R(a, b) and $R(a, c) \rightarrow b = c$ R(a, b) and $R(c, b) \rightarrow a = c$

The World as a Graph	Description Logics	Semantics	Reasoning in DL	Kahoot quiz
How far can we go?				
Extensions of	of ALC			

SHOIQ = OWL DL

- S=ALCR+: ALC with transitive role
- H = role hierarchy (subrole)
- O = nominal .e.g WeekEnd = {Saturday, Sunday}
- I = Inverse role
- Q = qulified number restriction e.g. \geq 1 hasChild.Man
- N = number restriction e.g. \geq 1*hasChild*
- D = concrete domains ⇒ SHOIQ (D)

The World as a Graph	Description Logics	Semantics	Reasoning in DL	Kahoot quiz
Outline				
 The Wor Descrip Family Descrip How f 	r Id as a Graph tion Logics y Ontology iption Logics ar can we go?			
3 Semant	ics			
Posson				

- Reasoning in DL
 - Transformation to negation normal form
 - Naive tableaux algorithm

5 Kahoot quiz

The World as a Graph	Description Logics	Semantics ●○○○	Reasoning in DL	Kahoot quiz ○○
Example of a	in interpretat	tion		

- (*Person* $\sqcap \exists gives.(Talk \sqcap \forall topic.DL)^{\mathcal{I}}$
- (*Person* $\sqcap \exists gives.(Talk \sqcap \exists topic.DL)^{\mathcal{I}}$
- (*Female* $\sqcap \exists gives.(Talk \sqcap \exists topic.DL)^{\mathcal{I}}$

The interpretation \mathcal{I} is a model of the tbox \mathcal{T} iff it satifies all the GCI in \mathcal{T} .

Two tboxes are called equivalent if they have the same models.

The World as a Graph	Description Logics	Semantics ○○●○	Reasoning in DL	Kahoot quiz
Semantics				

$$\begin{split} &\Delta = \{t_1, t_2, f_1, f_2, c_1, c_2, j, k, l, m, n\} \\ &Person^{\mathcal{I}} = \{j, k, l, m, n\} \\ &Car^{\mathcal{I}} = \{t_1, t_2, f_1, f_2, c_1, c_2\} \\ &Ferrari^{\mathcal{I}} = \{f_1, f_2\} \\ &Toyota^{\mathcal{I}} = \{t_1, t_2\} \\ &likes^{\mathcal{I}} = \\ &\{(j, f_1), (k, f_1), (k, t_2), (l, c_1), (l, c_2), (m, c_1), (m, t_2), (n, f_2), (n, c_2)\} \\ &Find the interpretation in \mathcal{I} of the following concepts: \end{split}$$

- ∃likes.Ferrari □ ∃likes.Toyota
- ∃likes.Ferrari □ ∀likes.Ferrari
- ∃likes.Ferrari □ ∃likes.¬Ferrari
- ∃likes.Cars □ ∀likes.¬(Toyota ⊔ Ferrari)

The World as a Graph	Description Logics	Semantics ○○○●	Reasoning in DL	Kahoot quiz
Semantics				

Consider the (graphical representation of the) interpretation \mathcal{I} with $\Delta^{\mathcal{I}} = \{d, e, f, g\}$:

List all elements *x* of $\Delta^{\mathcal{I}}$ such that $x \in C^{\mathcal{I}}$:

- *A* ⊔ *B*
- ∃*s*.¬A
- $\exists s.A \sqcap \forall s.A$
- ∃*s*.∃*s*.∃*s*.∃*s*.A
- $\neg \forall r.(\neg A \sqcap \neg B)$

The World as a Graph	Description Logics	Semantics	Reasoning in DL	Kahoot quiz
Outline				
1 The Wo	rld as a Graph			
 Descrip Family Descrip How f 	tion Logics y Ontology ription Logics far can we go?			
3 Semant	ics			
A Beason	ing in DL			

- Transformation to negation normal form
- Naive tableaux algorithm

Kahoot quiz

The World as a Graph	Description Logics	Semantics	Reasoning in DL	Kahoot quiz

Basic Inference problems

Subsumption: $C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all models \mathcal{I} of O. Equivalence: $C \equiv D$ iff $C^{\mathcal{I}} = D^{\mathcal{I}}$ in all models \mathcal{I} of O. Satisfiabiality: $C \not\equiv \bot$ iff $C^{\mathcal{I}}$ non empty in some model \mathcal{I} of O. Instantiation: $i \in C$ iff $i \in C^{\mathcal{I}}$ in all models \mathcal{I} of OConsistency: O consistent iff there is at least one model I of O. Coherency: O coherent iff all concepts are satisfiable. Problems reduced to satisfiabiality: $C \sqsubseteq D$ iff $C \sqcap \neg D$ not satisfiable.

The World as a Graph	Description Logics	Semantics	Reasoning in DL	Kahoot quiz

Inference services - examples

Example (Subsumption)

 $HappyMan = Human \sqcap \neg Female \sqcap (\exists married.Doctor) \sqcap (\forall hasChild.(Doctor \sqcup Professor))$ Doctor \sqsubseteq Human HappyMan is subsummed by $\exists married.Human$

Example (Instance)

HappyMan(bob), hasChild(bob, mary), ¬Doctor(mary) mary : Professor

Example (Consistency)

HappyMan(bob), hasChild(bob, mary), ¬Doctor(mary), ¬Professor(mary)

The World as a Graph	Description Logics	Semantics	Reasoning in DL	Kahoot quiz
			000	

Transformation to negation normal form

NNF: negation only in front of atomic classes.

- **1** Replace $C \equiv D$ by $C \sqsubseteq D$ and $D \sqsubseteq C$
- 2 Replace $C \sqsubseteq D$ by $\neg C \sqcup D$

Apply the equations:

$$\begin{split} \mathrm{NNF}(C) &= C & \text{if } C \text{ is a class name} \\ \mathrm{NNF}(\neg C) &= \neg C & \text{if } C \text{ is a class name} \\ \mathrm{NNF}(\neg \neg C) &= \mathrm{NNF}(C) \\ \mathrm{NNF}(C \sqcup D) &= \mathrm{NNF}(C) \sqcup \mathrm{NNF}(D) \\ \mathrm{NNF}(C \sqcap D) &= \mathrm{NNF}(C) \sqcap \mathrm{NNF}(D) \\ \mathrm{NNF}(\neg (C \sqcup D)) &= \mathrm{NNF}(\neg C) \sqcap \mathrm{NNF}(\neg D) \\ \mathrm{NNF}(\neg (C \sqcap D)) &= \mathrm{NNF}(\neg C) \sqcup \mathrm{NNF}(\neg D) \\ \mathrm{NNF}(\forall R.C) &= \forall R.\mathrm{NNF}(C) \\ \mathrm{NNF}(\exists R.C) &= \exists R.\mathrm{NNF}(C) \\ \mathrm{NNF}(\neg \forall R.C) &= \exists R.\mathrm{NNF}(\neg C) \\ \mathrm{NNF}(\neg \exists R.C) &= \forall R.\mathrm{NNF}(\neg C) \\ \mathrm{NNF}(\neg \exists R.C) &= \forall R.\mathrm{NNF}(\neg C) \\ \end{split}$$

Example ($P \sqsubseteq (E \sqcap U) \sqcup \neg (\neg E \sqcup D)$ **)**

 $\neg P \sqcup (E \sqcap U) \sqcup (E \sqcap \neg D)$

The World as a Graph	Description Logics	Semantics	Reasoning in DL ○●○	Kahoot quiz
Naive tableaux algorithm				

Reduction to (un)satisfiability

Idea: given knowledge base K

- Attempt construction of a tree (called Tableau), which represents a model of *K*.
- If attempt fails, *K* is unsatisfiable.

The tableau is a directed labeled graph:

- Nodes represent elements of the domain of the model. Every node x is labeled with a set L(x) of concepts: C ∈ L{x} ≡ "x is in the extension of C".
- Edges stand for role relationships. Every edge ≺ x, y ≻ is labeled with a set L(≺ x, y ≻) of role names. R ∈ L(≺ x, y ≻) ≡ "(x, y) is in the extension of R".

Example (C(a), $C \subseteq \exists R.D, D \subseteq E$ **)**

Does this entail $(\exists R.E)(a)$? Add $\forall R.\neg E(a)$ and show unsatisfiability:

The World as a Graph	Description Logics	Semantics	Reasoning in DL ○○●	Kahoot quiz
Naive tableaux algorithm				
Tableaux ex	ample			

Example (C(a), $C \subseteq \exists R.D, D \subseteq E \sqcup F, F \subseteq E$ **)**

Does this entail $(\exists R.E)(a)$? Add $\forall R.\neg E(a)$ and show unsatisfiability:

The World as a Graph	Description Logics	Semantics	Reasoning in DL	Kahoot quiz ○○
Outline				
1 The Wor	d as a Graph			
 Description Family Description Description How family 	t ion Logics / Ontology iption Logics ar can we go?			
3 Semanti	cs			
 Reasoni Transf Naive 	ng in DL ormation to nega tableaux algorith	tion normal i m	form	

The World as a Graph	Description Logics	Semantics	Reasoning in DL	Kahoot quiz ●○

Examples of DL beyond DLP

 $DL \setminus LP \sqcup LP \setminus DL$

- State a subclass of a complex class expression which is a disjunction (Human □ Adult) (Man □ Woman)

The World as a Graph	Description Logics	Semantics	Reasoning in DL	Kahoot quiz ○●
References				

- Acknowledgement: Slides adapted from Jie Bao, Carlos Areces
- Reading: Knowledge Representation and Reasoning, Logic meets Probability Theory, Peter Lucas, pages 39-43
- Additional Reading: The Description Logic Handbook Theory, Implementation and Applications Edited by Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, Peter Patel-Schneider, Chapter 2, Basic Description Logics