
Basic principles of cognitive algorithms design

Kristina Machova Jan Paralic
Department of Cybernetics and Artificial Intelligence Department of Cybernetics and Artificial Intelligence

Technical University of Kosice Technical University of Kosice
Letná 9, 042 00 Kosice Letná 9, 042 00 Kosice

Slovakia Slovakia
Kristina.Machova@tuke.sk Jan.Paralic@tuke.sk

Abstract – This paper focuses on basic principles of
cognitive algorithm design. It presents various
principles employed in known cognitive algorithms
dealing with different representations of concept
definitions. It discusses pros and cons of application of
the presented basic principles in relation with
classification task, which is one of the most often used
data mining approaches in various application
domains. This paper focuses also on systematization of
algorithm design. A problem (cognitive task) is
analyzed and those of basic principles are selected,
witch match the given cognitive task requirements.
Finally, a generic procedure for composition of a
suitable cognitive algorithm for particular classification
task is defined.

I. INTRODUCTION

We can see at least too main business motivations for
research of cognitive algorithms, which are able to learn
some kind of knowledge from data. Firstly, quality of a
knowledge-based system [6] used by a company is
dependent on the quality of knowledge, which is used by
the system. Secondly, knowledge discovered at the right
time may yield a high competitive advantage. Therefore, a
high degree of attention is devoted to research of
knowledge acquisition approaches.

A rich set of knowledge acquisition techniques comes
from machine learning employing different cognitive
algorithms. Cognitive algorithms can be of various kinds
(e.g. inductive, deductive, incremental, non-incremental),
they can perform learning with teacher or without teacher,
with attention to solve cognitive tasks of various kinds.
Moreover, they can use various representations of learned
knowledge. Therefore, a large number of various machine
learning techniques has been discovered and is being
further researched and improved. But, there is much less
information available with respect to their common basic
principles and methodology how to select a suitable of
learning algorithm for particular task. This paper is a
contribution in this direction.

We will assume, that the input of a cognitive algorithm
has the form of a set of training examples. The algorithm
produces a concept as its output – we expect to obtain
a definition of that concept as well. This definition can be
of different sorts. In case of a classification task, the
definition can often be in the form of a classification rule.
The concept definition will contain attributes with
appropriate values – conditions whose meeting will be
sufficient for the classification of a new example into a
class represented by the given concept.

The rest of this paper is organized as follows. Next
section provides description of the process of knowledge
discovery in databases. The third section is focused on
description of identified basic principles of classification
cognitive tasks. Fourth section proposes a generic
procedure for composition of a suitable cognitive
algorithm for particular classification task.

II. DATA MINING

Knowledge discovery in databases (KDD) can be
defined as nontrivial process of identifying valid, novel,
potentially useful, and ultimately understandable patterns
in data. According to [2] it is an interactive and iterative
process with several steps. It means that at any stage the
user should have possibility to make changes (for instance
to choose different task or technique) and repeat the
following steps to achieve better results. Data mining is a
part of this process.

In most of sources, the term Data Mining (DM) is often
used to name the field of knowledge discovery. This
confusing use of terms KDD and DM is due to historical
reasons and due to fact that the most of the work is focused
on refinement and applicability experiments of machine
learning algorithms from artificial intelligence for the data-
mining step. Pre-processing is often included in this step as
a part of mining algorithm.

Within the KDD process following steps can be
recognized [3].

1. Data cleaning - removal of noisy and inconsistent data
2. Data integration - data from multiple data sources

may be combined
3. Data selection, where data relevant to the analysis task

are retrieved from database (data warehouse)
4. Data transformation - data are transformed or

consolidated into forms appropriate for mining
5. Data mining –core of the KDD process, where

intelligent methods are applied in order to extract data
patterns (explicit form of knowledge)

6. Pattern evaluation – to identify interesting patterns
7. Knowledge representation - visualization of mined

knowledge.
There are various types of data mining, e.g.

descriptive data mining (trying to find a compact
description of a specific subgroup of data), or predictive
data mining (building a classification or prediction model
from a training data set and using it for predicting class or
target attribute for new instances of data).

One of the most often used data mining tasks is
classification with plenty of possible algorithms to be
applied.



III. BASIC PRINCIPLES

The basic principles, which can be found in different
cognitive algorithms, can be divided into characteristic and
aided principles. Characteristic principles are: ordered
version space, hill-climbing principle, division of example
space into subspaces, control with exceptions and
competitive principle. Aided principles are: score function
and reduction of the number of versions. Aided principles
obviously are combined with characteristic principles.
Combinations between various characteristic principles are
also possible. Possible combinations of all basic principles
are presented (dash line) in Figure 1, which presents a kind
of ontology of basic principles.

Figure 1: Basic principles ontology. (P1 - ordered version space, P2 - hill
climbing principle, P3 - division of example space into subspaces, P4 -
control with exceptions, P5 - competitive principle, P6 - score function,

P6 - reduction of the number of versions).

Algorithms, in which these principles are used, will be
presented. Detailed descriptions of these algorithms can be
found in [5] and [8].

A. Ordered version space

One of the possibilities how to find a concept definition
is to create a space of all concept versions and to search for
a solution in this space. The search will be more effective
when concept versions will be ordered according to some
criterion. Generality is the most used criterion for this
ordering. We can use three kinds of search through the
ordered version space: from general to specific, from
specific to general, and parallel search combining both
directions. This principle is used e.g. by the following
algorithms: VSS (Version Space Search) [7], EGS
(Exhaustive General to Specific), and ESG (Exhaustive
Specific to General).

B. Hill-climbing principle

This principle is based on investigation of the
surroundings of an actual solution and the solution is
moved into the best point found in the neighborhood of the
actual solution. The process is repeated until the sub-
optimal solution is found. Examples of algorithms using
this principle are e.g. IWP (Iterative Weight Perturbation),
SOMA [7].

C. Division of example space into subspaces

The principle of division of the example space into
subspaces was one of the first principles used in the field
of machine learning. This principle is known as „divide
and conquer“. It is based on division of the example space
into subspaces until the finishing condition is met, for
example till each subspace contains only examples of the
same class. The division into subspaces is based on
conditions defined by means of information theory. The
principle is used e.g. in the following algorithms: NSC
(Non-incremental Separate and Conquer), AQ11, ID3,
ID5R, C4.5, and MDPL.

D. Control with exceptions

Control with exception means that training examples
are classified into a set of defined classes within each
algorithm iteration. New classes are created for incorrectly
classified examples – exceptions. This process is repeated
until all exceptions are correctly classified. The principle
of control with exceptions is used in NCD (Non-
incremental Induction of Competitive Disjunctions), ICD
(Incremental Induction of Competitive Disjunctions), and
NEX (Non-incremental Induction of Decision List with
Exceptions).

E. Competitive principle

Competitive principle is based on concepts candidates’
evaluation according to some score function. The concept
candidate evaluated as the best one is selected. For
example such score function can be probability of class
(concept candidate), or distance of a classified example
from prototypes of different classes.

This principle is used by Bayes classifier and by
cognitive algorithms for prototypes generation: NCD and
ICD [5].

F. Score function

If we try to find the optimal solution, then we have to
search through the whole version space. We must do
exhaustive search, which is slow and demanding on time
and memory resources. That is why we try to find out
those concept versions that enable us to solve the given
problem in the shortest way. We will use search bias – we
will investigate some versions before the others. We will
have to define a score function, which assigns the highest
value to the best version. Generally, the value of the score
function increases with Pc (number of covered positive
training examples) and Nnc (number of uncovered negative
training examples). A good score function considers the
whole number of positive and negative examples. More
sophisticated functions use statistical or information
measures, for examples entropy. The principle of score
functions is used in the algorithms: HGS (Heuristic
General to Specific), HSG (Heuristic Specific to General),
and HCT (Heuristic Criteria Tables), and also in some
algorithms for decision trees generating (e.g. ID3 [9],
ID5R and C4.5 [10]) and decision lists (e.g. CN2 [1]).



G. Reduction of the number of concept versions

When we give up the optimal solution requirement, we
can limit the number of considered concepts in each
iteration of a learning algorithm. So we reduce the number
of concept versions considered during version space
search. We can define this number before the learning
algorithm starts as its parameter BS - Beam Size. As a rule
the Beam Size is combined with a score function and they
are presented as heuristic approach to learning. Concept
versions are ordered according to values of the score
function and only BS best versions are selected in each
iteration. This heuristic approach is a compromise between
precision and effectiveness – it does not guarantee to find
the optimal solution, but always is able to find some quite
well solution in real time. That principle is used in the
following algorithms: HGS, HSG, and HCT.

The various combinations of basic principles in known
cognitive algorithms are presented in Table 1. (P1 is
ordered version space, P2 is hill-climbing principle, P3 is
division of example space into subspaces, P4 is control
with exceptions, P5 is competitive principle, P6 is score
function, P7 is reduction of the number of versions.)

TABLE I

COMBINATION OF BASIC PRINCIPLES IN COGNITIVE
ALGORITHMS

P1 P2 P3 P4 P5 P6 P7
VSS *
EGS *
ESG *
HGS * * *
HSG * * *
HCT * *
IWP *
SOMA *
NSC *
AQ11 *
ID3 * *
ID5.R * *
C4.5 * *
MDPL *
NCD * *
ICD * *
NEX *
CN2 *

IV. COGNITIVE ALGORITHMS DESIGN

The quality of learning algorithm design depends on
the suitable selection of one or more basic principles.
These basic principles are selected according to the kind of
learning task, which should be solved by the algorithm.

Complicated learning task with large number of
training examples can be solved by using ordered version
space search with the aid of score function and reduction
of the number of concept versions. This basic principles
combination is suitable for learning tasks with short time
available for solution and if optimal solution is not
necessary.

Principle of control with exception can by used for task
represented by noisy training data.

A learning task characterized by very unbalanced
distribution of examples into classes can be solved using
principle of the division of example space into subspaces.

A hill-climbing principle is suitable for learning task
with linear separability.

Untraditional combinations of basic characteristic
principles are also possible. For example combination of
using division of example space into subspaces with using
ordered version space search in all subspaces.

We propose the following generic procedure for
composition of suitable cognitive algorithm:

• Analysis of the given data set and DM task.
• Selection of a set of suitable basic principles for

the given DM task.
• General algorithm design, based on selected basic

principles.
• Selection of a suitable programming language.
• Algorithm implementation in selected language.
Proposed generic procedure can effectively be

supported by KDD software tool that integrates also
various algorithms for classification (e.g. [4]).

V. ACKNOWLEDGMENT

This work has been done within the VEGA project
1/8131/01 ”Knowledge Technologies for Information
Acquisition and Retrieval” of Scientific Grant Agency of
Ministry of Education of the Slovak Republic.

VI. REFERENCES

[1] Clark, P., Nibblet, T.: The CN2 Induction Algorithm.
Machine Learning, Vol.3, No.4, 1989, 261-284.

[2] Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: The
KDD Process for Extracting Useful Knowledge from
Volumes of Data. Comm. of the ACM, Vol.39,
No.11, 1996, 27-34.

[3] Han, J. and Kamber, M. (2000). Data Mining –
Concepts and Techniques. Morgan Kaufmann
Publishers, 2000.

[4] KDD Package with documentation:
http://neuron.tuke.sk/~paralic/KDD/

[5] Langley, P.: Elements of Machine Learning. Morgan
Kaufmann Publishers, Inc. San Francisco, California,
1996, 419.

[6] Mach, M.: Knowledge acquisition for knowledge-
based systems. Elfa, Košice, 1997, 104.

[7] Mitchell, T.M.: Version spaces: A candidate
elimination approach to rule learning. Proc. of the 5th

Int. Joint Conference on Artificial Intelligence,
Cambridge, MA: Morgan Kaufmann, 1977, 305-310.

[8] Mitchell, T.M.: Machine Learning. The McGraw-Hill
Companies, Inc. New York, 1997b, 414.

[9] Quinlan, J.R.: Induction of decision trees. Machine
Learning 1, 1, 1986, 81-106.

[10] Quinlan, J.R.: C4.5 Programs for Machine Learning.
Morgan Kaufmann Publishers, San Mateo,
California, 1993, ISBN 1-55860-238-0.


