
Movement Optimisation of Cooperating Ant Colony: A Study in
Agent–based Social Simulation

Machová Kristína1, Peter Illiáš1

1Department of Cybernetics and Artificial Intelligence, Technical University, Letná 9, 042 00 Košice, Slovakia,
Kristina.Machova@tuke.sk,

Abstract: The article is dedicated to the field of ant algorithms. It focuses on the problem of searching the
shortest path in a graph using ant algorithms in combination with some artificial intelligence methods:
evolutionary algorithms and multi-agent systems. The article presents a simulation program, which is able to
search the shortest path in a graph. The process of searching the solution is simulated also in a graphical way – in
a visual form.
Agents, which simulate ants in our work, need only a limited memory. Thus, the use of the presented
implementation is not restricted by the complexity of the solved problem. It is an advantage of our simulation.
The size of population is controlled by natural selection. On the other hand, agents need more time to get lost in
bigger environments. Therefore, the population size increases more quickly in greater environments. The
implementation is adaptive as well. If some edge – graph route – is deleted while the program is running or a
new one is created, the system is able to adapt to the changed environment.
The designed simulation program can be used for solving various problems related to the following domains:
electronic market, computer maps, traffic planning, computer games, labyrinth search by a robot, connection-
oriented network routing and connection-less network routing.

Key words: ant algorithms, evolutionary algorithms, multi agent systems, graph, the shortest path

1. Introduction
The nature inspires researchers in various ways. Airplanes were designed according to bird
wings. Robot movements were copied from movements of insect. Many resistant materials
were made by the same technology which spiders employ to produce their nets. After many
million years of evolution, the nature offers many solutions of various problems not only in
the field of the research and technique.
Algorithms based on the behaviour of ants – ant algorithms – were used at first by Marco
Dorigo1 and his co-workers under the name ‘Ant Colony Optimization’ (ACO) algorithms.
ACO were realised using on multi-agent systems in order to solve hard combinatorial

optimisation problems [2], [3]. The most known problems from
them were Travelling Salesman Problem (TSP) and Quadratic
Assignment Problem (QAP). New approaches and applications of
the ant algorithms appear during the short history of these
methods. The latest applications deal with traffic movement,
graph colouring, routing in communication nets, and so on. The
idea of the ACO, like many other ideas in the field of research

and technique, is based on principles, which are present everywhere in the nature. ACO
algorithms, according to the name, are based on the principles which hold in the world of
natural ant colonies. Ants are “social” kind of insect, like bees. The basic principle of this
“social system” is the following: colony is always preferred to individual ants. The ability of
the ants to find a source of food and the shortest route to the food is very interesting. A secret
of their skill is in releasing pheromone in their surrounding and thus in creating a pheromone

1 Marco Dorigo – professor at Universit´e Libre de Bruxelles. He is also the founder of the association

IRIDIA, which associates people interested in theory and applications of ant algorithms.

1

trail. The ants can percept this pheromone trail and move along it. In case of trail crossing, the
ants make a decision where to go – according to the intensity of the pheromone trails. They
usually follow the route with the most intensive pheromone trail. The trail also enables them
to go back to their nest. In this way, several routes between the nest and the food source are
created. The ants are gradually able to find the shortest route to the food source and then the
majority of ants will use this route in future.

2. Collective intelligence
Scientists from many research fields have taken an interest in “social” behaviour of insect
species mainly due to ingenious structure of their communities. Some kinds of insect,
including ants, have the ability of self-organising in the form of a super-organism. In reality,
ants are able to find the shortest path from a source of food to the nest without using eyes.
Also, they are able to adapt their behaviour to environmental changes. For example, they can
find the new shortest path in the case, when the old one is not usable any more because of
barricading it by an obstacle. (Figure 1) illustrates the situation, when an obstacle appears in
the middle of the path connecting the nest and the source of food.

Figure 1: An obstruction of the shortest path

In the moment the obstacle appears on the path, those ants, which find oneself in front of the
obstacle, cannot follow the pheromone trail. They have to decide to which side (left or right)
they turn. To take an unbiased position, let us suppose that the half of ants turn left and the
other half of ants turn right (Figure 2).

Figure 2: The primary uniform ant distribution

The ants, which select the shorter path around the obstacle, are able to reconstruct the
pheromone trail on this new path more quickly than the ants, which select the longer path
around the same obstacle. Pheromone evaporation is also an important factor to come into
play. Without pheromone evaporation, quantity of pheromone on both paths would be in
balance after returning the slower ant group. As a result, an ant would have to select between
two equally strong trails on the crossroad. Because of pheromone evaporation, more quantity

2

of pheromone is evaporated from the longer trail. Thus, the shorter path becomes stronger and
stronger and, subsequently, more and more ants select this shorter path. Finally, all ants move
along this shorter path (Figure 3).

Figure 3: The final selection of the shortest path around the obstacle

Because of this positive auto-catalytic process, incoming ants can easily make a decision to
select shorter path. Auto-catalysis is a very strong property. This property is also used by
evolutionary algorithms within selective and reproductive mechanisms. It is about preferring
better organisms (results) – this preference determines the direction of subsequent search. A
distributed optimisation mechanism can be based on this principle, where pheromone trails
represent a memory. This memory can be read from and wrote into by all ants in a colony.
The memory serves as a communication channel enabling communication between individual
ants. It is interesting, that an individual ant can randomly find the shortest path to food as
well. But only ant colony – a group of ants can find the optimal solution - the shortest path to
food. Thus, the shortest path finding is an emergent behaviour of the ant colony.
Ants find the path using on indirect communication – using on changing the environment they
operate in. The phenomenon of stigmergy relates narrowly with the activity of social insect.
The term (stigmergy) was introduced by French biologist Pierre-Paul Grassé
in 1959 to refer to termite behaviour [6]. He defined it as: "Stimulation of workers by the
performance they have achieved."The essence of this phenomenon is the following fact: the
colony coordination does not require any direct interactions between colony members
(agents). Colony members communicate between each other only using on stimuli, which
remain in the environment as results of their previous activities. In case of active stigmergy,
results of their previous activities are characteristic marks, for example pheromone trails of
ants. In case of passive stigmergy, results of their previous activity are local changes of the
structure or state of the environment.

3. Used methods
We used basic ideas of ant algorithms in our experiments. The most known ant algorithms are
Ant System [4] and ACO (Ant Colony Optimisation) [3]. These algorithms simulate the
behaviour of an ant colony using on “artificial ants”. These artificial ants (similarly to real
ants) represent a colony of cooperating individuals, which use pheromone marks for both
activity control and communication. They search a sequence of local steps in search space to
find the shortest path. They also perform random decisions without any procedure defined
beforehand. All their decisions are local in space and also in time.

3

Artificial ants differ from real ants in the following:
• Artificial ants live in a discrete world and their movements in space consist of

transitions from one discrete place to another.
• Artificial ant has an internal state representing memory of his previous actions.
• Artificial ants conserve the values of a pheromone trail, which leads to “solution of

good quality”.
• To improve results of ant algorithms and systems based on them, the algorithms can

be enriched by some methods (e.g. look-ahead, local optimisation, backtracking, etc.)
which cannot be found in real ant activities.

We decided to base our own simulation of ant algorithms only on using basic ideas of ant
algorithms without using complicated mathematical models. Our aim was to show a simple
simulation of ant colony behaviour using on artificial intelligence methods. Particularly, we
used techniques of evolutionary algorithms and multi-agent systems. Multi-agent systems
were used to create an ant population searching given graphs. Evolutionary algorithms were
used to refine obtained results and their optimisation.
We used a modified version of the Ant Colony Optimisation algorithm, which can by used in
distributed environment:

procedure ACO_Meta_heuristic()
while (stop_condition = false)

select_activity:
generate_ant();
evaporation_pheromone ();
daemon_action();

end select activity
end while

end procedure

procedure generate_ant()
initialize_ant();
M = actualize_memory();
while (actual_state ≠ goal_state)

A = local_route_table();
P = count_movement_probability(A,M,restrictions);
next_step = select_step(P,restrictions);
go_to_next_state(next_step);
if (online_pheromone_inserting = true)

set_pheromone();
correct_route_table();

 end if
M = modify_internal_state();

end while
if (online_pheromone_inserting = true)

evaluate_solving ();
save_pheromone();
correct_route_table();

 end if
die();

end procedure
3.1 Evolutionary algorithms

4

Evolutionary algorithms are based on the observation of properties of biological evolution,
which was described by Ch. Darwin in 1859. Biological evolution represents the development
of the genetic information in individual organisms during generation replacement.
Evolutionary process contains mainly the following important components:

• natural selection
• random mutation
• reproduction process

The natural selection enables a stronger individual to succeed better in an environment. This
fact means its greater chance for reproduction. The reproduction process is an important
component of evolution because of the opportunity to transfer genetic information from
parents to children. During reproduction by crossing, the part of information in genetic code is
replaced. Moreover, this information can be randomly mutated. The random mutation is a
random change of a certain sector of the genetic information. The most important part of
evolution process is just the reproduction process. Some number of descendants (usually two)
is selected according to their strength. The stronger descendant (agent), the higher probability
to be selected. The whole process is realized within several phases:

• selection
• crossing
• returning of new individuals to population

There are two strategies for adding new individuals to population during evolution process.
Using the first strategy, a completely new population is generated. In the second strategy,
several new agents are generated. These new agents consequently replace the same number
the weakest agents from the old (original) population. The evolutionary algorithms, serving as
an optimization method, exist nearly thirty years. Many new techniques were developed
during this time [8], [9].

3.2 Multi-agent systems
The most frequently cited definition of agent is the definition by Wooldridge and Jennings
[10], which differs between strong agents and weak agents. A weak agent is defined as a
hardware system or (more often) a software system, which fulfils the following requirements:

• Autonomy: The agent acts without any direct human or another intervention. It has
control over its actions and internal states.

• Social ability: Agents communicate with other agents (occasionally with humans)
using on some communication language.

• Reactivity: Agents perceive their environment, which can represent physical world,
user, other agents, Internet or a combination of above mentioned possibilities. In
addition, agents react on changes in the environment in real time.

• Pro-activity: Agents do not perform only simple reactions according to the state of the
environment. Their acting can be goal-oriented with taking over initiative.

The definition of a strong agent adds to above given requirements some other concepts, which
can characterize mental and emotional states for example cognisance, belief, attention and so
on. This conception was reformulated in the work by H. S. Nwan, in which the following
definition of strong agent is introduced: the agent has to have at least two from the following
three abilities:

• Autonomy: Agent is able to operate in an environment without human intervention
even if the world is not explicitly described. The key element of the autonomy is pro-
activity – the ability to act in a goal oriented way and initiatively.

5

• Cooperation: A set of social abilities, which enable agent to communicate with other
agents or human using on some communication language. Cooperation is one of very
important abilities of multi-agents systems.

• Learning: In order to enable an agent to react within a dynamic and non deterministic
environment and perform some actions in it, learning must be present in the form of an
interaction with the environment. It is expected that the quality of agent behaviour in
the environment can be improved using on learning.

Several agents are grouped together to reach some goal in multi-agent systems and particular
relations between agents of the group are defined. In such system, each agent has some means
(it can dispose with) and limitations (it has to act within these limitations to reach its goal).
No agent in the system is unusable or redundant.
Each agent tries to perform a given task in its best way which is reflected in the final solution
of the problem. In this "agent colony", agents coordinate their abilities, knowledge, goals and
plans in order to solve a given problem collectively. These agents can work collectively on
the same problem or each agent can work on a separate task while all tasks are related to one
another.
There are several reasons, why the use of multi-agent systems provides an advantage:

• Parallel system – the possibility of using more agents to speed up system working
using on parallel methods.

• Robust system – if control and responsibility are suitably distributed among particular
agents, then the system can tolerate failure of one or more agents.

An ant as an individual has no global knowledge about task it performs. Its decisions are local
and unpredictable. The simplicity of ants provides ability to model an ant colony as a multi-
agent system.

4. Implementation – simulation of graph search
A comparison of a graph search and ‘food search’ performed by ants provides some
similarities between these two problems. Ants try to find the best (the shortest) path between
two places (nest-food) in a given environment. Scientists try to find the best (the shortest)
route joining two nodes in a given graph.
The main idea of our designed system is to provide ants with the possibility to move in a
given graph. In this context, the intensity of pheromone marks on separate graph edges is
studied. The graph nodes represent various places in the environment, where ants can stop.
These places can be called cities. The edges, which join the nodes of the graph, represent
routes between city pairs in the environment. This ‘virtual environment’ will be inhabited by a
population of agents, which represent separate ants.

4.1 Simulation of an ant colony using on the multi-agent system
Agents move in a given graph from one city to another one. They also collect food when they
reach a food source. And they ‘drop’ the food when they come back to the nest. An agent,
moving along a route in the graph, marks it by its pheromone to update pheromone trail.
Finally, agents have to be able to decide, which route they should follow, according to the
intensity of pheromone on edges. Agents can perform only certain actions according to their
position, as illustrated in Table 1. All actions listed in Table 1 need only local information.
The memory of each agent is of low capacity, but the capacity of this memory is sufficient for
each ant to know the path back to the nest. The easiest way how to design a multi-agent
simulation of the environment is to use a turn-based system. This kind of system is like a
game – each player can realize only one step in each cycle of this game. This idea forms a

6

base of the simulation in which each agent can perform only one action from Table 1 per
cycle.

Table 1: Actions, which can be performed by agents according to the place they are located in.

Agent position Performed action
In the city Next route selection and marking this route by pheromone
On the route Moving along
In the nest carrying food Putting down the food
In the food source Taking the food and coming back to the nest

All elements of the environment are simulated using on the following classes (in C++
programming language):

a) Ant class represents an individual agent – an ant
b) Route class represents edges of the graph – paths between cities
c) City class represents nodes of the graph – individual cities
d) Civilization class represents the environment in which ants move (live)

City class represents X and Y coordinates of a position in the environment. This class is
essential for calculating the distance between two cities.
Route class needs two pointers to city class in order to define the cities it connects. Another
property of this class is the length of the route between the cities. The longer the route, the
greater number of steps is needed for an ant to walk along this route. In addition, the class
represents the intensity of pheromone located on the given edge. Very important aspect,
which has to be simulated, is the evaporation of the pheromone trail. Thus, the class has to
contain also this information.

Class Route – a sample of class definition
class Route
{
 private:
 float Length; // route length
 int Pheromone; // pheromone intensity on the route
 City *FirstCity; // cities, which are connected by the route
 City *SecondCity;

 public:
 void EvaporatePheromone(); // simulation of the pheromone evaporation
 // constructors, boundaries, assistant methods and other parameters
 // . . .
};

The most important characteristic of each ant in this context is its individual and
unpredictable tendency to select one of accessible edges. Each instance of the ant class must
represent an individual agent with individual and unique properties, which can be realized
using a mathematical function based on the level of pheromone intensity. The pheromone
intensity has an integer representation. A tendency for the selection of a route based on the
pheromone intensity is evaluated for individual agents.

7

Good flexibility of the behaviour of agents can be guaranteed by a function:

T(PL) = α ∗ sin(β ∗ PL + γ) (1)

Function T(PL) derives it’s name T from the word “tendency” of the selection. It evaluates
the tendency for selecting a route with PL (pheromone level). PL is the level of the
pheromone intensity on the given route. The route with the greatest value of function T(PL) is
selected. α, β and γ are parameters of the ant class initialised as random float numbers from
the interval [-5, 5]. These parameters guarantee the presence of different individuals in the
population of agents, since agents with the same way of making decisions and acting are not
required. These parameters play some task in a evolutionary algorithm (will be described in
the next section).
We decided to choose the function T(PL) in the above given form because of using
evolutionary algorithms in the role of a tool used for solving the problem: of finding the
shortest path between two places (nest-food).

Class Ant – a sample of class definition
class Ant
{
 private:
 float α; // indicates sensibility of ants on pheromone
 float β;
 float γ;
 bool HaveFood; // indicates ant, when carrying the food

 public:
 float GetTendency(int PheroLevel);
// the tendency of the route selection in relation with the pheromone intensity
 void PickFood(); // taking the food while in the food source
 void LeaveFood(); // dropping food in the nest
 void PutPheromone(); // changing the pheromone credit of a route
 void Walk(); // making another step
// constructors, boundaries, assistant methods and other parameters
// . . .
};

Civilization class represents a mean to control the whole environment and simulation
process. This class is responsible for evolutionary processes as well. The environment is
represented by a graph. This graph has to be created by user using on interface provided to
users. The other possibility is to read a graph from the set of graphs (environments) created
and stored before. Two nodes of the selected graph have to be specified as nest and food
sources. When simulation starts, a random number of ants are created in the nest. Each
movement of an ant depends on its actual position. During simulation run, the most frequently
used route increase their pheromone credits. After some time, a solution of the given problem
is found as a collective decision of the virtual ant colony.
Although this system provides good results, the random number of agents with random
characteristics can cause troubles. An agent population, which is able to find the shortest path
in a graph, may not be able to find a solution in a complete heterogeneous environment

8

Class Civilization – a sample of class definition
class Civilization
{
 private:
 City *FoodSourceCity; // food source of the given civilisation in the environment
 City *Nest; // nest of the given civilisation in the environment
 TList *Routes; // all routes in the given environment
 TList *Cities; // all cities in the given environment
 TList *Ants; // all ants in the given environment
 int NaturalSelection; // remaining steps before next selection

public:
 void NextTurn(); // realisation of one step in simulation
 // constructors, boundaries, assistant methods and other parameters
 // . . .
};

There are some questions, which should be answered: How to find the best agents for solving
a given problem? How many agents are needed to perform the search of graphs with various
complexities? How to counterbalance various properties of various agents to create a good
population? Answers can be produced using evolutionary algorithm techniques.

4.2 Optimisation of the ant colony using on evolutionary algorithms
Evolutionary algorithms provide adaptive optimisation techniques based on the evolutionary
process as seen in the nature. A population of individuals, which represent possible solution
candidates for a given problem, is controlled by Darwin’s principle of “surviving the most
successful” in next generations. The most successful individuals can transfer their properties
on their descendants – the transfer is mediated by their genes. Gradual population
development and its adaptation to the environment accomplished by mutation and natural
selection enable to obtain better results. Because of random generation of agents with random
characteristics (parameters), a very long time may be needed to obtain a successful solution.
Or maybe no successful solution will be found at all. The efficiency of the system can be
improved by some evolutionary algorithm techniques like selection, crossover and mutation.

Selection
Selection represents the selection of the best individuals for mating. In our case, the most
successful individuals are those, which are able to collect greater amount of food (workers) or
which are able to find the shortest alternative paths to food sources (explorers). During the
food collection, an agent increases the pheromone credit of a good (frequently used) route,
and in such way it influences other ants from the colony. Natural selection enables the best
individuals to spread their good properties by mating. Like in the nature, the evolution in the
system enables the new generation to be better than the parent generation (the previous
generation). Agents, which lost their way in the environment, cannot help to solve the
problem. For example a “traveller”, which travels only between two nodes and moves along
only one edge, is not usable. These individuals are removed from the population.
Our application implements the selection in the following way. The most successful worker is
an individual, which collects the greatest amount of food. A counter is implemented in the
Ant class. It is incremented whenever the agent brings food into the nest. Agents with higher
values of the counter will be considered as more successful than others during each selection
process. The purpose of another counter is to count how many times an agent used the same

9

route. Low values of this counter indicate a successful explorer. Higher values of the counter
indicate the fact that an agent has lost his way in the environment.

Crossover
New descendants are based on characteristics and properties of successful individuals. Since
there are two kinds of individuals in the colony: workers and explorers, two new individuals
are created in each evolutionary cycle. One new individual is a descendant of two the most
successful workers and the other new individual is a descendant of two the most successful
explorers. Genes representing parents’ properties are combined in order to create a new
chromosome on which the new individual is based. This technique has borrowed its pattern
from the nature, particularly from the biological crossover. Each property of the new
individual is inherited randomly from one parent.
In our application, crossover is implemented in the following way. In the Ant class there is a
constructor containing two references (from parents) to an object Ant in the form of a set of
three parameters α, β and γ defined in the ant class. A new individual is created by combining
characteristics (parameters) of the parents as illustrated on (Figure 4). A chromosome consists
of three genes, which represent properties of an individual. A new chromosome is created
from “zeros” and “ones” with the same probability. “Zero” means that a property was
inherited from one parent (mother) and “one” means that the property was inherited from the
other parent (father).

Figure 4: Crossover in action.

Mutation
There is also some low probability of mutation after crossover. The mutation promotes the
diversity of the population because one from the three parameters is randomly changed during
mutation.

Migration
A completely new individual is inserted randomly into the population during the migration
step. The effect of migration is similar to the effect of mutation. Diversity of the environment
is increased. The implementation of migration in our application is following. A completely
new individual is created by assigning random values to parameters α, β and γ. This
implementation is done using on the default constructor of the Ant class.

The Ant class has the following form after described modifications:

10

Class Ant – a sample of class definition after modification
class Ant
{
 private:
 float α; // indicates sensibility of ants on pheromone
 float β;
 float γ;
 bool HaveFood; // indicates whether ant is carrying food
 int FoodCollected; // amount of food collected by ant

 public:
 Ant(); // Default constructor: complete new individual
 Ant(Ant *Father, Ant *Mother); // crossover constructor
 float GetTendency(int PheroLevel); // tendency of the route selection evaluation
 void PickFood(); // picking up the food in a food source
 void LeaveFood(); // dropping food in the nest
 void PutPheromone(); // increase of the pheromone credit of a route
 void Walk(); // making another step
 void Mutation(); // mutation operator

 // constructors, boundaries, assistant methods and other parameters
 // . . .
};

4.3 Interface description of the simulation
The main part of our application is a window representing an interface for defining graphs.
User can design and draw a new graph, read an old graph used before, or to save the newly
designed graph. In each graph there is the necessity to define a nest and a food source. The
nest is represented by the blue colour while the food source is marked in red. The application
contains a window, showing the route with the highest actual pheromone concentration, as
illustrated in (Figure 5).
The window of the simulation interface provides information about in which actual cycle
(loop) the simulation is, how many ants reside within population and how much food has been
collected. The simulation runs until a termination condition is met. The stop condition can be
defined in the form of a maximum number of cycles (loops) or maximum amount of food
collected within a given loop.
In order to illustrate the application, a sample of simulation run can be presented. Let us
consider the following initial state of simulation in (Figure 6): eight cities and nine edges
constitute a test graphical environment to search while nodes 0 and 7 represent the nest and
the food source. There is a number assigned to each edge, which represents the pheromone
intensity and route length associated with the given edge. The information is expressed in the
following form: ‘pheromone | length’.

11

Figure 5: User interface of used simulation program

Figure 6: The initial state of simulation

After 115 simulation cycles (Figure 7), the route 0-3-4-6-7 is preferred.

12

Figure 7: The preferred route after 115 simulation cycles

After 254 cycles of the run, a change in route selection was detected (Figure 8). Now, the
route 0-2-6-7 seems to be preferred. Because this path is shorter than the previous one, the
pheromone intensity starts to increase along this path. The previous route is evaporated.

Figure 8: The preferred route after 254 simulation cycles

After simulation completes 316 cycles from the beginning of the simulation run, the
termination criterion regarding the maximum number of cycles comes to effect. The result is
definitely the route 0-2-6-7, which is marked in thick line in (Figure 9).

Figure 9: The resulted route of simulation

Many experiments were completed with good results. Efficiency of the system has been
increased after adding some improvements. For example, releasing stronger pheromone marks
by ants while returning back to the nest with food. It enables for the most successful agent to
increase its influence on the other agents.

13

5 Discussion
Many search algorithms rapidly increase their memory requirements when trying to solve
difficult problems. Agents, which simulate ants in our work, need only a limited memory.
Thus, the use of the presented implementation is not restricted by the complexity of the solved
problem. It is an advantage of our simulation.
Another advantage is the fact, that the size of population is controlled by natural selection. On
the other hand, agents need more time to get lost in bigger environments with greater number
of alternative paths. As a result, unsuccessful individuals are eliminated from the population
later than while searching simpler environments. Therefore, the population size increases
more quickly in greater environments.
There is no central system to perform decision making in the presented implementation.
Information is distributed among agents and the environment. If one agent is lost in the
environment, then the system continues in problem solving and the lost agent cannot
influence the result.
The implementation is adaptive as well. If some edge – graph route – is deleted while the
program is running or some new one is created, the system is able to adapt to the changed
environment.

6 Conclusions
The aim of our work was to design a simulation program, which would be able to present
competencies of ant algorithms in a graph searching task. In frame of this simulation we used
techniques of artificial intelligence: evolutionary algorithms, multi-agent systems and ant
algorithms. The presented implementation is not restricted to only graph search. It is
applicable also in tasks with unknown search space.
The designed simulation program can be used for solving various problems related to the
following domains: electronic market, computer maps, traffic planning, computer games,
labyrinth search by a robot, connection-oriented network routing and connection-less network
routing. It would be interesting to use our access based on ant colony simulation on
simulation of financial markets [5] or retail markets [7]. Nowadays, computer maps start to be
widely used in car industry. The systems built in cars enable drivers to see all possible routes
or they navigate drivers to use the shortest route from a city A to B. Traffic planning requires
solving very difficult optimisation tasks. Path finding is one of the very frequent problems
and applications of artificial intelligence in computer games. The most suitable route is
searched for between two nodes in two-dimensional plane (2D games – e.g. strategies) or in
three-dimensional space (3D games – e.g. plane simulator).
Our simulation program has proved that ant algorithms represent a suitable method for
solving problems, which can be reduced on a graph search. For example, the particular mapping
of a web sub-graph be used in the role of new technology, can be used to increase the educational
flexibility of a modern laboratory for teaching computer systems [1]. We believe in the future of the
ant algorithm theory. Nowadays, systems based on the theory of ant algorithms start to be
used in the commerce sphere.

Acknowledgements
The work presented in the paper was supported by the Slovak Grant Agency of Ministry of
Education and Academy of Science of the Slovak Republic within the 1/4074/07 project
”Methods for annotation, search, creation, and accessing knowledge employing metadata for
semantic description of knowledge”.

14

References:
1. BABIUCH, M., The Usage of the New Technologies at the Education at the Department of

Control Systems and Instrumentation. Sborník vědeckých prací, Technical University Ostrava, No. 2,

Vol. L II., Ostrava, 2006, 7-12, ISBN 80-248-1211-8, ISSN 1210-0471.

2. COLORNI, A., DORIGO, M. and MANIEZZO, V., Distributed optimization by ant colonies.

Proceedings of ECAL91 - European Conference on Articial Life, Elsevier Publishing, 1991.

3. DORIGO, M., Di CARO, G. and GAMBARDELLA, L. Ant Algorithms for Discrete Optimization.

Technical Report IRIDIA/98-10, Universite Libre de Bruxelles, Belgium. To appear in Artificial Life,

1998, http://citeseer.ist.psu.edu/dorigo98ant.html.

4. DORIGO, M., The Ant system: Optimization by a colony of cooperating agents. IEEE

Transactions on Systems, Man, and Cybernetics--Part B , vol. 26, No. 2, pp. 29--41, 1996,

http://citeseer.ist.psu.edu/dorigo96ant.html.

5. GOU, Ch., The Simulation of Financial Markets Using an Agent-Based Mix-Game Model.

Journal of Artificial Societies and Social Simulation 9(3), 2006 http://jasss.soc.surrey.ac.uk/9/1/15.html.

6. GRASSE, P.P., La reconstruction du nid et les coordinations interindividuelles chez

bellicositermes natalensis et cubitermes sp. La theorie de la stigmergie: essai d’interpretation du

comportement des termites constructeurs. Insectes Sociaux, 6, 1959, 41–81

7. HEPPENSTALL, A., EVANS, A. and BIRKIN, M., Using Hybrid Agent-Based Systems to Model

Spatially-Influenced Retail Markets. Journal of Artificial Societies and Social Simulation, 9(3), 2006,

http://jasss.soc.surrey.ac.uk/9/1/15.html.

8. KVASNICKA, V., POSPÍCHAL, J. and TIŇO, P., Evolutionary algorithms. Vydavateľstvo STU,

Bratislava, 2000, http://math.chtf.stuba.sk/evol/Prednaska.htm

9. OLEJ, V., Economic Processes Modeling on the Base of Computational Intelligence. Miloš

Vognar-M&V, Hradec Králové, Česká republika, 2003, 160s., ISBN 80-903024-9-1.

10. WOOLDRIGE, M., An Introduction to Multiagent Systems. John Wiley & Sons, Chichester,

England, 2002, ISBN 047149691X. http://www.csc.liv.ac.uk/~mjw/pubs/imas/

15

http://www.csc.liv.ac.uk/~mjw/pubs/imas/
http://www.wiley.com/
http://jasss.soc.surrey.ac.uk/9/1/15.html
http://jasss.soc.surrey.ac.uk/9/1/15.html
http://citeseer.ist.psu.edu/dorigo96ant.html

